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Abstract

A new method is presented for accurately and efficiently simulating multi-scale multibody systems with
discontinuous changes in system definitions as encountered in adaptive switching between models with
different resolutions as well as models with different system topologies. An example of model resolution
change is a transition of a system from a discrete particle model to a reduced order articulated multi-
rigid body model. The discontinuous changes in system definition are modelled using kinematic joints
and impulsive loads. The method uses a spatial impulse-momentum formulation in a divide and conquer
scheme and uses a hierarchic assembly-disassembly process by traversing the system topology in a binary
tree map to solve for the jumps in the generalized speeds and constraint impulsive loads in linear and
logarithmic complexity in serial and parallel implementations respectively. The method is applicable for
systems in serial chain as well as kinematically closed loop topologies. The coupling between the unilateral
and bilateral constraints is handled efficiently through the use of kinematic joint definitions. The equations
in this formulation are in a sub-structured form which limits the discontinuous changes locally within a
sub-structure without effecting the system level equations. This allows for modelling the systems without
having to reformulate the equations for the whole system.

Introduction

Multibody dynamics methods are being used in multi-scale modelling for computational studies of important
physical phenomena occurring at different spatial and temporal scales. The physical phenomena involve
modelling of polymer melts, polymers in aqueous solutions, proteins, DNA, and biomolecules among others.
These systems are characterized by large spatial size spanning thousands (103 − 104) of degrees of freedom
and the simulations involve temporal domains ranging from femto to micro (10−15−10−3) seconds. Given the
large spatial and temporal complexity involved in modelling these systems, intelligent modelling schemes are
employed to alleviate the computational expense. Adaptive imposition of constraints for model reduction is
one such scheme. In this approach, the large-scale full fidelity fine resolution model of a system is transformed
into a comparatively smaller system by adaptive imposition of constraints. These constraints reduce the
model to a simpler one that retains the essential dynamics using a lower fidelity model. For example, in
a biomolecular system, the overall conformational motion may be captured using a articulated multi-body
model while the full fidelity model has to be studied using fully atomistic fine scale resolution. However
given the wide variety of properties that these simulations aim at capturing, it often becomes necessary
to switch between different resolutions during the course of a simulation. An example of this switching
would involve constraining out certain degrees of freedom associated with high frequency motion without
impacting overall conformational dynamics. This is often done to allow larger integration time steps. These
adaptive imposition of constraints give rise to discontinuous changes in system definition during the course
of a simulation.

Transition between different levels of model refinement during a simulation is achieved by effectively
constraining (or adding) certain degrees of freedom as one moves from a fine scale model to a reduced order
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model (or vice versa). These changes take place instantaneously during the course of a simulation without
a smooth transition between different models and as such may be viewed as system model changes resulting
from impulsively applied constraints. These transitions result in discontinuous change in the number of
system degrees of freedom with certain degrees of freedom being instantaneously constrained. Another
important aspect is the efficient and accurate handling of systems with topological changes. Examples of
topology changes include the forming or breaking of bonds, where the bonds are treated as kinematic joints as
opposed to stiff springs. Topology changes are also found in phenomena like docking or formation of hydrogen
bonds as found in modelling proteins where the system changes from serial chain to a kinematically closed
loop(s).

Both of these systems, i.e. systems where certain degrees of freedom are instantaneously constrained
(or unconstrained) and systems where loops are formed (or broken), are typically classified as systems with
unilateral constraints and/or bilateral constraints. This class of problems include systems where certain
constraints are switched from active to inactive or vice versa based on certain criterion. These constraints
are not continuous in time and result in the system definition switching discontinuously during the course of
a simulation. During the switching of an unilateral and/or bilateral constraint, the structure of the equations
and the constraints change in a discontinuous fashion, potentially requiring reformulation of the equations
of motion and disruption of the temporal integration scheme. This can result in significant computational
expenses unless efficient schemes are employed. Moreover, unless a consistent and correct set of generalized
speeds are calculated for further simulation of the system after the discontinuous change, the results obtained
produce physically incorrect dynamic behavior of the system.

Two broad classes of approaches may be employed to model these systems. The first class of approaches is
based on contact mechanics where local deformation models are used. This approach [1]-[2] is recommended
when the focus of the study is to understand the events in the immediate vicinity of the discontinuous
event i.e. when a detailed understanding of the effect of the discontinuous event is desired. Such an
approach can provide excellent insight into the event, but limits the simulation in sufficiently small spatial
and temporal domains. Additionally, such formulations are inclined to produce stiff systems of equations
that are computationally expensive. This computationally expensive approach is not useful when the focus
is to study the overall dynamics of the system over long temporal domains. The second approach [3]-
[13] is thus often employed in these studies where the discontinuous event is instead modelled using a
momentum formulation through kinematic constraints and impulsive loads and is suitable for large temporal
simulations. In this approach, the complementarity formulation is often used resulting in a set of Differential
Algebraic Equations (DAE) with appropriate constraints. These methods have found application and success
in modelling of systems with many bodies and many unilateral constraints, for example in the simulation of
granular materials with potentially many contacts / impacts [4][14]. The DAE formulations typically result
in sparse large set of equations that can be solved using specialized space solvers. However there exist some
numerical issues in the treatment of the impulse momentum formulations using a differential algebraic set
of equations [15][11].

State space formulations [16]-[19] have been used in multibody dynamics to alleviate the traditional
numerical difficulties of DAE formulations [15]. The state space formulations extract a set of Ordinary
Differential Equations (ODEs) from the DAE formulation by explicitly embedding the constraints in the
governing equations. State space formulations have been used in the past [20][21] for solving the class of
momentum-impulse problems discussed above. Traditionally, these formulations result in a set of n coupled
equations, where n is the number of degrees of freedom in the system. The computational cost associated
with forming these equations and their subsequent decomposition for solution is typically expensive, requiring
O(n3) computations. This can be a significant computational expense particularly when the number of
degrees of freedom are large as is encountered in biomolecular systems and other microscopic systems.
Moreover, these approaches are not well adapted for treatment of kinematically closed loops as encountered
in systems with bilateral constraints. Further when studying complementarity type problems, these result
in undesirable coupling between the bilateral and unilateral constraints.

A new algorithm is presented in this paper for accurately and efficiently simulating multibody systems
with discontinuous changes in system definitions with the objective of correctly capturing the nonlinear
coupling arising from the articulated nature of the multibody systems. The impulse-momentum formulation
is implemented using a sub-structured approach in a Divide and Conquer scheme [22]-[23]. The algorithm
utilizes the definition of joint motion map (or partial velocities) in calculating the generalized relative veloc-
ities between bodies that are connected together by kinematic joints. The method implements a hierarchic
assembly-disassembly process by mapping the bodies in the system to a binary tree. This process couples
together the impulse-momentum equations of the individual bodies to formulate and solve the corresponding

2



equations for the whole system using the boundary conditions. This results in inherently sub-structured
form of equations within the formulation making it highly conducive to adjusting / modifying model types
within a sub-structure. This is because such a change only affects the sub-structure equations and does not
require a change in the global equations. The algorithm is applicable to general systems with either tree or
closed loop topologies. The constraint violations are minimum and the procedure is applicable even when
a system is in a singular configuration. Further, this method is able to maintain linear and logarithmic
complexity in serial and parallel implementations respectively. The coupling between the unilateral and
bilateral constraints is handled efficiently through the use of kinematic joint definitions. The reader should,
however, note that though this method is extremely successful in the class of problems studies, it may not be
best suited for simulating the generic class of contact-impact problems, specially when encountering systems
with potentially many impacts and rebounds.

In the next section, the analytical preliminaries required for the development of the algorithm is presented.
The derivation for the recursive formulae is presented next. The hierarchic assembly-disassembly process is
then discussed where the methodology for dealing with loops and chains is discussed. Results of numerical
test cases to validate the algorithm are then presented followed by a brief discussion on the results.

Analytical Preliminaries

A multibody system consists of individual bodies in the system connected together by kinematic joints to
form an articulated system. Depending on the topology, the system can be classified as serial chain, tree
or kinematically closed loop(s). Each individual body of the system is associated with its mass and inertia
values as well as joints by which the body is connected to other bodies in the system. These joints allow
relative motion between bodies through the joint degrees of freedom. In the absence of a kinematic joint,
two bodies can move with respect to each other through 6 degrees of freedom. So the motion map between
the bodies is a rank 6 matrix. A kinematic joint constraints the relative motion between two bodies, allowing
only certain degrees of freedom (dof) while constraining out the others. Thus the kinematic joint partitions
the 6 dimensional relative motion map between two bodies into the joint motion map P which is of dimension
6 × dof and its orthogonal complement D of dimension 6 × (6 − dof ), where dof is the number of degrees
of freedom allowed by the joint. The joint allows relative motion in the space spanned by the columns of
the joint motion map P . The joint cannot support a constraint load in the space spanned by P . However
the constrained degrees of freedom are mapped by the columns of D and the joint can support constraint
loads in the space spanned by this matrix. For example, in case of a representative spherical joint Jk,
the translational degrees of motion are constrained while the rotational degrees of freedom are maintained.
Hence the corresponding maps maybe given by

P Jk

=


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

 DJk

=


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 (1)

From a linear algebra point of view, the joint motion map P can also be interpreted as the 6 × dof matrix
that maps the dof generalized speeds u at the joint into a 6 × 1 column matrix of spatial relative velocity
at the joint.

It is apparent from their definitions, the orthogonal complement DJk

and the joint motion map P Jk

of any representative kinematic joint between two representative bodies k and k + 1, satisfy the following
orthogonality relation

(P Jk

)T ·DJk

= 0 and (DJk

)T · P Jk

= 0 (2)

A common term used continually in the paper is a handle. A handle is any selected point on the body
which is used in modelling the interactions of the body with the environment. The handles on a body can
correspond to a joint location, a center of mass or any desired reference point. For modelling convenience,
the handles can be chosen to even coincide. A body can have any number of handles on it. For the algorithm
presented here, the joint locations are chosen as the handles on the body.
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Another term used is an event. An event describes any discontinuous change in system definition. This
includes specific joints definitions being changed and formation or breaking of kinematic loops as found in
unilateral and bilateral constraints.

The equations derived in the next section are in the format of spatial vectors and tensors as presented
in [24]. For example, the spatial velocity vector of the center of mass on body k is shown in equation(3).
Similarly, the spatial inertia tensor of body k about its center of mass is shown in equation(4).

Vk
0 =

[
ωk

0

vk
0

]
(3)

Mk
0 =

[
Ik
0 0

0 mk

]
(4)

In the above, the subscript 0 denotes the center of mass of the body, while superscript k indicates that
the quantity is associated with representative body k. Mk

0 is the 6× 6 spatial inertia matrix of k about the
point ′0′ and is composed of the 3 × 3 inertia matrix of body k about its mass center, the 3 × 3 diagonal
mass matrix mk in which each diagonal element of the matrix is equal to the mass of body k, and 3× 3 zero
matrices 0. The quantity V k

0 is the 6× 1 spatial velocity associated with the center of mass of body k in the
inertial reference frame N. This matrix comprises of the 3× 1 angular velocity vector ωk of body k in N and
the translational velocity vk

0 of the body k mass center in N .
In the analytical treatment presented here, direction cosine matrices and transformation between different

basis are not shown explicitly. Appropriate basis transformations have to be taken into account for an
implementation of this algorithm. Further, similar to prior multibody literature [25]-[26], this algorithm uses
a redundant mixed set of coordinates, viz. Cartesian coordinates and relative coordinates, throughout the
derivation.

Two Handle Generalized Inertia

Consider two representative bodies body k and body k+1 of any articulated system as shown in figure 1.
The joint between body k and body k+1 is referred to as Jk. The two handles on body k corresponding to
the locations Hk

1 and Hk
2 are associated with joints Jk−1 and Jk respectively. Similarly, the two handles on

body k+1 corresponding to the locations Hk+1
1 and Hk+1

2 are associated with joints Jk and Jk+1. Further
the velocities of the handles Hk

1 and Hk
2 and the constraint forces acting on these points will be denoted by

the superscript k and subscripts 1 and 2 respectively.
For notational convenience, let the subscript t− and t+ represent the state of any quantity before and

after, respectively, of an event. For example, let the spatial velocity Vk
0 before an event be represented as

Vk
0 t− while after an event it is represented as Vk

0 t+ .
During an event, at any joint in the system, the joint definition is instantaneously altered. To alter

a joint definition, the joint is either constrained out such that no relative motion is possible between two
bodies connected by the joint (joint locking) or alternately, specific degrees of freedom allowed by the joint
are constrained. This event thus involves a change within the joint model, including the locking of joint
degrees of freedom, or the breaking of a joint constraint. In any regard the joint definition is instantaneously
altered.

The altering of the joint definition can be analytically modelled as the change in the joint motion map.
Consider for example a spherical joint being altered. Before the event, the joint motion map of the spherical
joint is P Jk

t− as shown in equation(5). As before, the joint definition can be altered in two ways. If the joint
is locked out, there are no relative degrees of freedom remaining in the joint and its new joint motion map
is a null matrix. On the other hand, if only a single degree of freedom is constrained, say the rotation about
the second joint axis is constrained, the new joint motion map is given by P Jk

t+ in equation(5)

P Jk

t− =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

 P Jk

t+ =


1 0
0 0
0 1
0 0
0 0
0 0

 (5)

It is apparent that when the joint definition is altered during an event, the number of generalized speeds
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Figure 1: Two Representative Bodies

across a joint u changes. For example, if the joint is locked out, the number of generalized speeds become
zero while for the case shown in equation(5), the number of generalized speeds changes from 3 to 2.

For analytical derivation, lets differentiate between the terminology of altered and unaltered joints. Al-
tered joints are the ones where the joint definitions have been changed instantaneously resulting in specific
generalized speeds being instantaneously constrained to zero. The unaltered joints are the ones where the
joint definition is not changed.

In either case, the spatial impulse-momentum equations of a representative body k about its center of
masses can be written as

Lk
0 t+ − L

k
0 t− =

∫ t+

t−
Fk

0 dt (6)

⇒ Lk
0 t+ − L

k
0 t− =

∫ t+

t−
Sk1/k0Fk

c1
dt+

∫ t+

t−
Sk2/k0Fk

c2
dt+

∫ t+

t−
Fk

a dt+
∫ t+

t−
Fk

nondt︸ ︷︷ ︸
0

(7)

With Lk
0 =

[
Ik
0ω

k
0

mkvk
0

]
=

[
Ik
0 0

0 mk

] [
ωk

0

vk
0

]
(8)

Where Lk
0 t+ − L

k
0 t− = Mk

0 [Vk
0 t+ − V

k
0 t− ] =Mk

0∆Vk
0 (9)

And Sk0/k1 =
[
U (rk0k1)×
0 U

]
; Sk0k2 =

[
U (rk0/k2)×
0 U

]
(10)

In the above, Fk
0 is the effective equivalent spatial impulsive load acting on body k at its center of mass.

This load is the sum of the impulsive constraint force acting on body k at its inward handle i.e point k1

represented by
∫ t+

t− F
k
c1
dt, the impulsive constraint force acting at its outward handle i.e. point k2 represented

by
∫ t+

t− F
k
c2
dt while the active impulsive loads acting on the body at its center of mass represented by the term∫ t+

t− F
k
a dt. The term

∫ t+

t− F
k
nondt represents the effect of all non-impulsive loads on the body. These loads

include non-impulsive spatial active loads such as actuators, spring forces and forces arising from potential
fields. Since the duration of the impulse is infinitesimal, the effect of non-impulsive forces over the duration
of the event is negligible and hence represented in the above equation as zero.

In the equations, although the term
∫ t+

t− F
k
a dt has been explicitly shown, in applications discussed here,

this term is absent because there are no externally applied impulsive forces being explicitly applied to the
bodies. This term needs to be accounted for in cases when an event is being studied using a contact model
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and not through a joint. This quantity is state dependent and can be calculated upfront using either a
coefficient of restitution model, or some other form of contact model in appropriate applications. In any
case, the term is either zero or considered to be a state dependent known quantity.

The change in spatial momentum of any body can also be written in terms of the velocities of the two
handles on the body by using the kinematic relation between the spatial velocities of the center of mass and
the handles. In these equations, the term ∆V indicates a jump in the spatial velocity of a body. The jump
reflects a discontinuous change in the value of the spatial velocities arising from an event.

Lk
0 t+ − L

k
0 t− =Mk

0 [Vk
0 t+ − V

k
0 t− ] =Mk

0(Sk0/k1)T [Vk
1 t+ − V

k
1 t− ] =Mk

0(Sk0/k1)T ∆Vk
1 (11)

Lk
0 t+ − L

k
0 t− =Mk

0 [Vk
0 t+ − V

k
0 t− ] =Mk

0(Sk0/k2)T [Vk
2 t+ − V

k
2 t− ] =Mk

0(Sk0/k2)T ∆Vk
2 (12)

Thus combining the above equations (7-11), the impulse-momentum equations for body k can be written
in terms of the velocity jump at handle 1 as

Mk
0(Sk0/k1)T ∆Vk

1 =
∫ t+

t−
Sk1/k0Fk

c1
dt+

∫ t+

t−
Sk2/k0Fk

c2
dt+

∫ t+

t−
Fk

a dt (13)

⇒ ∆Vk
1 = Φk

11

∫ t+

t−
Fk

c1
dt+ Φk

12

∫ t+

t−
Fk

c2
dt+ Φk

13 (14)

In a similar fashion, the impulse-momentum equation for body k can be written in terms of the velocity
jump at handle 2 as

Mk
0(Sk0/k2)T ∆Vk

2 =
∫ t+

t−
Sk1/k0Fk

c1
dt+

∫ t+

t−
Sk2/k0Fk

c2
dt+

∫ t+

t−
Fk

a dt (15)

⇒ ∆Vk
2 = Φk

21

∫ t+

t−
Fk

c1
dt+ Φk

22

∫ t+

t−
Fk

c2
dt+ Φk

23 (16)

The impulse-momentum equation of the body k when referred to the jump in the velocities of the two
handles on the body will henceforth be referred to as the two handle impulse-momentum equations as shown
in (17-18).

∆Vk
1 = Φk

11

∫ t+

t−
Fk

c1
dt+ Φk

12

∫ t+

t−
Fk

c2
dt+ Φk

13 (17)

∆Vk
2 = Φk

21

∫ t+

t−
Fk

c1
dt+ Φk

22

∫ t+

t−
Fk

c2
dt+ Φk

23 (18)

Similarly, the two handle impulse-momentum equations for body k + 1 can also be written in the same
fashion as below

∆Vk+1
1 = Φk+1

11

∫ t+

t−
Fk+1

c1
dt+ Φk+1

12

∫ t+

t−
Fk+1

c2
dt+ Φk+1

13 (19)

∆Vk+1
2 = Φk+1

21

∫ t+

t−
Fk+1

c1
dt+ Φk+1

22

∫ t+

t−
Fk+1

c2
dt+ Φk+1

23 (20)

Now consider the relative velocity at the intermediate joint between the two bodies. The joint motion
map for this joint is given by P Jk

. From the definition of the joint motion map, the following kinematic
relation exists.

Vk+1
1 − Vk

2 = P Jk

uk/k+1 (21)

⇒ ∆Vk+1
1 −∆Vk

2 = ∆(P Jk

uk/k+1) (22)

In the above equations, the term ∆(P Jk

uk/k+1) accounts for the instantaneous changes across the joint.
If the joint is an unaltered type, the joint motion map is not changed and hence the term becomes

∆(P Jk

uk/k+1) = P Jk

[uk/k+1
t+ − uk/k+1

t− ] = P Jk

∆uk/k+1 (23)
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where ∆uk/k+1 is the jump in the generalized speeds across the joint associated with a discontinuous change
or event.

However, if the joint is the altered one, then the there is an instantaneous change in the joint motion
map as well as the values of the generalized speeds. The term ∆(P Jk

uk/k+1) becomes

∆(P Jk

uk/k+1) = P Jk

t+ u
k/k+1
t+ − P Jk

t− u
k/k+1
t− (24)

In both the above equations(23-24), the only unknown in either case is the term u
k/k+1
t+ . The generalized

speed before the event uk/k+1
t− as well as the joint motion maps before P Jk

t− and after P Jk

t+ the event are
known quantities. Also, in the two handle equations(17-18), the constraint impulsive forces at either handle
are the unknown quantities.

From Newton’s third law of motion, the impulses acting on either body at the intermediate joint are
equal in magnitude and opposite in direction i.e.∫ t+

t−
Fk

c2
dt = −

∫ t+

t−
Fk+1

c1
dt (25)

Substituting the expressions for ∆Vk
2 and ∆Vk+1

1 from equations(18) and (19) respectively, into the kinematic
relation given by equation (22) and using the relation between the constraint forces from above equation(25),
the following expressions can be obtained.

∆(P Jk

uk/k+1) = Φk+1
11

∫ t+

t−
Fk+1

c1
dt+ Φk+1

12

∫ t+

t−
Fk+1

c2
dt+ Φk+1

13

− Φk
21

∫ t+

t−
Fk

c1
dt− Φk

22

∫ t+

t−
Fk

c2
dt− Φk

23 (26)

⇒ [Φk
22 + Φk+1

11 ]
∫ t+

t−
Fk+1

c1
dt = Φk

21

∫ t+

t−
Fk

c1
dt+ Φk

23

−Φk+1
12

∫ t+

t−
Fk+1

c2
dt− Φk+1

13 + ∆(P Jk

uk/k+1) (27)

In the above equation, the constraint impulses at the common joint is expressed in terms of the constraint
impulses at the other two handles on the two bodies and the incremental jump in the relative spatial velocity
across the joint. However, the objective is to decouple the constraint impulse from the jump in the generalized
speeds. To do this, the space in which the spatial constraint impulses are contained needs to be analyzed.

Irrespective of whether the joint is an altered or an unaltered joint, the spatial constraint impulses lie
in exactly the space spanned by the orthogonal complement of the joint motion map of the joint after the
event i.e. DJk

t+ . As indicated earlier, a kinematic joint can support constraint loads in the space spanned
by the orthogonal complement of the joint motion map. Now if the joint is unaltered in the event, then the
orthogonal complement remains the same and the joint impulsive constraint loads are contained in the space
spanned by DJk

t+ = DJk

t− . However if the joint is altered, one (or more) of the relative degrees of freedom
are instantaneously suppressed. In terms of the motion map matrix, this means that one (or more) column
matrix of the joint motion map is instantaneously eliminated and the same column matrix is appended to
the orthogonal complement matrix. Clearly the constraint impulses applied at the joint to suppress the joint
degrees of freedom are in the same space spanned by the column matrices that transitions from the joint
motion map to the orthogonal complement matrix. Additionally there are other impulses acting at the joint
due to the coupling with all other bodies in the system. These constraint impulses are in the space where
the joint can no longer allow relative motion i.e. the space spanned by the orthogonal complement of the
joint motion map after the event DJk

t+ .
Hence, to eliminate the incremental jump in the generalized speeds from equation(27), pre-multiply the

equation(27) by [DJk

t+ ]T . By the definition of orthogonality, (DJk

t+ )TP Jk

t+ = 0 and hence the incremental jump
in the relative spatial velocity is now eliminated from the equation. Further, the spatial constraint impulses
are contained in the space mapped by the orthogonal complement of the joint motion map. Hence the spatial
constraint impulses can be expressed in terms of the measure numbers of the constraint impulses. Here F is
an order list of the measure numbers of the constraint torques and forces.
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∫ t+

t−
Fk+1

c1
dt = DJk

t+

∫ t+

t−
Fk+1

c1
dt (28)

Substituting this expression into above equation (27) and multiplying by [DJk

t+ ]T , the desired expression
for the constraint impulses at the common joint can be obtained as

[DJk

t+ ]T [Φk
22 + Φk+1

11 ]DJk

t+

∫ t+

t−
Fk+1

c1
dt = [DJk

t+ ]T Φk
21

∫ t+

t−
Fk

c1
dt+ [DJk

t+ ]T Φk
23

−[DJk

t+ ]T Φk+1
12

∫ t+

t−
Fk+1

c2
dt − [DJk

t+ ]T Φk+1
13 + [DJk

t+ ]TP Jk

t+︸ ︷︷ ︸
0

u
k/k+1
t+ − [DJk

t+ ]TP Jk

t− u
k/k+1
t− (29)

⇒
∫ t+

t−
Fk+1

c1
dt = DJk

t+ ([DJk

t+ ]T [Φk
22 + Φk+1

11 ]DJk

t+ )−1[DJk

t+ ]T {Φk
21

∫ t+

t−
Fk

c1
dt

+ Φk
23 + Φk+1

12

∫ t+

t−
Fk+1

c2
dt− Φk+1

13 − P Jk

t− u
k/k+1
t− } (30)

⇒
∫ t+

t−
Fk+1

c1
dt = XΦk

21

∫ t+

t−
Fk

c1
dt−XΦk+1

12

∫ t+

t−
Fk+1

c2
dt+ Y (31)

where X = DJk

t+ ([DJk

t+ ]T [Φk
22 + Φk+1

11 ]DJk

t+ )−1[DJk

t+ ]T (32)

and Y = X [Φk
23 − Φk+1

13 − P Jk

t− u
k/k+1
t− ] (33)

The above expression for the constraint impulses at the common joint can be substituted into the cor-
responding two handle impulse-momentum equations at the other two handles of the bodies and after some
manipulations can be obtained as below.

∆Vk
1 = [Φk

11 − Φk
12XΦk

21]
∫ t+

t−
Fk

c1
dt+ [Φk

12XΦk+1
12 ]

∫ t+

t−
Fk

c1
dt+ [Φk

13 − Φk
12Y] (34)

and ∆Vk+1
2 = [Φk+1

21 XΦk
21]
∫ t+

t−
Fk

c1
dt+ [Φk+1

22 − Φk+1
21 XΦk+1

12 ]Fk+1
c2

dt+ [Φk+1
23 + Φk+1

21 Y] (35)

In the above equations, the spatial impulse-momentum equations of body k and body k+1 are coupled
together to form the corresponding equations of the assembly of bodies k and k+ 1 represented as k : k+ 1.
For the assembly, ∆Vk:k+1

1 and ∆Vk:k+1
2 represent the jumps in the spatial velocities at its boundary joints.

Collecting terms in above equations, the equations of the assembly can be written as

∆Vk:k+1
1 = Υk:k+1

11

∫ t+

t−
Fk:k+1

c1
dt+ Υk:k+1

12

∫ t+

t−
Fk:k+1

c2
dt+ Υk:k+1

13 (36)

∆Vk:k+1
2 = Υk:k+1

21

∫ t+

t−
Fk:k+1

c1
dt+ Υk:k+1

22

∫ t+

t−
Fk:k+1

c2
dt+ Υk:k+1

23 (37)

The above equations (36-37) can be considered as the two handle impulse-momentum equations of the
resulting assembly of body k and body k+1. From the above, a recursive set of expressions for the inertia
coupling terms of the resulting assembly Υk:k+1

ij can be obtained as follows below.

Υk:k+1
11 = [Φk

11 − Φk
12XΦk

21] (38)
Υk:k+1

12 = [Φk
12XΦk+1

12 ] (39)
Υk:k+1

13 = [Φk
13 − Φk

12Y] (40)
Υk:k+1

21 = [Φk+1
21 XΦk

21] (41)
Υk:k+1

22 = [Φk+1
22 − Φk+1

21 XΦk+1
12 ] (42)

Υk:k+1
23 = [Φk+1

23 + Φk+1
21 Y] (43)
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Figure 2: The Hierarchic Assembly and Disassembly Process using Binary Tree Structure

Hierarchic Assembly-Disassembly

In the previous section a set of recursive formulae are derived that are used to couple together the spatial
impulse-momentum equations of two consecutive bodies to form the corresponding equations of the resulting
assembly. In the associated manipulations, the two bodies are coupled together to form an assembly by
expressing the intermediate (common) joint constraint impulse in terms of the spatial constraint impulses at
the other two handles and the inertia coupling terms. This process can now be repeated for all bodies in the
system where the spatial impulse-momentum equations of two successive bodies or assemblies are coupled
together using the recursive formulae to obtain the corresponding equations of the resulting assembly. It is
similar to the divide and conquer scheme for solving the equations of motion of rigid bodies [22]-[23]. This
process works hierarchically exploiting the same structure as that of a binary tree.

The hierarchic assembly process begins at the level of individual bodies of the system. Adjacent bodies of
the system are hierarchically assembled to construct a binary tree as shown in Figure (2). Individual bodies
that make up the system form the leaf nodes of the binary tree. The impulse-momentum equations of a
pair of bodies are coupled together using the recursive set of formulae to form the corresponding equations
of the resulting assembly. The resulting assembly now corresponds to a node of the next level in the binary
tree. Working along the binary tree in this hierarchic assembly processes, only a single assembly is left as
the root node of the binary tree. The root node corresponds to the two-handle representation of the entire
articulated system modelled as a single assembly. The impulse-momentum equations of this root node can
be expressed as

∆V1:n
1 = Φ1:n

11

∫ t+

t−
F1:n

c1
dt+ Φ1:n

12

∫ t+

t−
F1:n

c2
dt+ Φ1:n

13 (44)

∆V1:n
2 = Φ1:n

21

∫ t+

t−
F1:n

c1
dt+ Φ1:n

22

∫ t+

t−
F1:n

c2
dt+ Φ1:n

23 (45)

Here the superscript 1 : n is used to denote the whole system being represented as a single assembly as the
root node of the binary tree. In this case, the handles 1 and 2 of this entity are the boundary joints of the
articulated system. Similarly the spatial constraint impulses are those arising from the interaction of the
system with its boundaries. The above represent two sets of equations in terms of four sets of unknowns i.e
the jumps in the spatial velocities at the boundary joints ∆V1:n

1 , ∆V1:n
2 and the corresponding constraint

impulses and
∫ t+

t− F
1:n
c1
dt,
∫ t+

t− F
1:n
c2
dt. Consider the three following scenarios that may arise for a system.
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Free floating

This case corresponds to a system which is free floating, i.e. there are no kinematic joints connecting the
system to the inertial frame. In the absence of any kinematic joints at either boundary, there are no constraint
impulses that can act on the system at the boundaries. In this case, in the equations(44-45) the constraint
impulse terms are all zero and the jumps in the spatial velocities can be easily solved as

∆V1:n
1 = Φ1:n

13 (46)
∆V1:n

2 = Φ1:n
23 (47)

Anchored at one end by kinematic joint

In this case, the system is connected to the inertial frame by a kinematic joint at one end while the other
end is free floating. For such a system, there are no constraint impulses acting at the free end and in the
equations(44-45) the term

∫ t+

t− F
1:n
c2
dt = 0. However at the connected end, the system will experience a

constraint impulse because of the kinematic joint. The spatial impulse-momentum equations in this case
reduce to

∆V1:n
1 = Φ1:n

11

∫ t+

t−
F1:n

c1
dt+ Φ1:n

13 (48)

∆V1:n
2 = Φ1:n

21

∫ t+

t−
F1:n

c1
dt+ Φ1:n

23 (49)

From the definition of the kinematic joint and its joint motion map, there exist the following kinematic
relations:

V1:n
1 = P 1u1 (50)

⇒ ∆V1:n
1 = ∆(P 1u1) (51)

Further, from the definition of the orthogonal complement of the joint motion map, the constraint
impulses at the handle can be expressed as∫ t+

t−
F1:n

c1
dt = D1

t+

∫ t+

t−
F1:n

c1
dt (52)

Substituting the above equations(51-52) into equations (48-49) the following is arrived at.

∆(P 1u1) = P 1
t+u

1
t+ − P

1
t−u

1
t− = Φ1:n

11 D
1
t+

∫ t+

t−
F1:n

c1
dt+ Φ1:n

13 (53)

⇒ P 1
t+u

1
t+ = Φ1:n

11 D
1
t+

∫ t+

t−
F1:n

c1
dt+ Φ1:n

13 + P 1
t−u

1
t− (54)

Using the orthogonality relation between P 1
t+ and D1

t+ , the new generalized speed at the joint as well as
the constraint impulses can be solved from equation(54) as

∫ t+

t−
F1:n

c1
dt = −D1

t+ [(D1
t+)T Φ1:n

11 D
1
t+ ]−1(D1

t+)T [Φ1:n
13 + P 1

t−u
1
t− ] (55)

u1
t+ = P 1

t+ [(P 1
t+)T (Φ1:n

11 )−1P 1
t+ ]−1(P 1

t+)T [Φ1:n
13 + P 1

t−u
1
t− ] (56)

Substituting the above equations(55-56) into equations(48-49), the jumps in the boundary spatial veloc-
ities i.e. ∆V1:n

1 and ∆V1:n
1 can be easily calculated.

Anchored at both ends by kinematic joints

In this case, the system is connected to the inertial frame by a kinematic joint at both ends. Here, the
system reduces to a kinematically closed loop topology. For such a system, there are constraint impulses

10



acting at both the ends due to the kinematic joints. In this case the spatial impulse momentum equation
for the system remains

∆V1:n
1 = Φ1:n

11

∫ t+

t−
F1:n

c1
dt+ Φ1:n

12

∫ t+

t−
F1:n

c2
dt+ Φ1:n

13 (57)

∆V1:n
2 = Φ1:n

21

∫ t+

t−
F1:n

c1
dt+ Φ1:n

22

∫ t+

t−
F1:n

c2
dt+ Φ1:n

23 (58)

Similar to the previous situation, the following kinematic relations exist between the boundary joints and
their joint motion maps.

V1:n
1 = P 1u1 and V1:n

2 = P 2u2 (59)
⇒ ∆V1:n

1 = ∆(P 1u1) and ∆V1:n
2 = ∆(P 2u2) (60)

Further, from the definition of the orthogonal complement of the joint motion map, the constraint
impulses at the handle can be expressed as∫ t+

t−
F1:n

c1
dt = D1

t+

∫ t+

t−
F1:n

c1
dt and

∫ t+

t−
F1:n

c2
dt = D2

t+

∫ t+

t−
F1:n

c2
dt (61)

Substituting the equations (60) into equations (57-58) and absorbing the terms (P iui)t− into the Φ1:n
i3

(i = 1 : 2), one obtains,

P 1
t+u

1
t+ = Φ1:n

11

∫ t+

t−
F1:n

c1
dt+ Φ1:n

12

∫ t+

t−
F1:n

c2
dt+ Φ1:n

13 (62)

P 2
t+u

2
t+ = Φ1:n

21

∫ t+

t−
F1:n

c1
dt+ Φ1:n

22

∫ t+

t−
F1:n

c2
dt+ Φ1:n

23 (63)

Multiplying the above equations by (D1
t+)T and (D2

t+)T respectively, and calling on the orthogonality
relation, the following is obtained.

0︷ ︸︸ ︷
(D1

t+)TP 1
t+ u

1
t+ = (D1

t+)T [Φ1:n
11

∫ t+

t−
F1:n

c1
dt+ Φ1:n

12

∫ t+

t−
F1:n

c2
dt+ Φ1:n

13 ] = 0 (64)

(D2
t+)TP 2

t+︸ ︷︷ ︸
0

u2
t+ = (D2

t+)T [Φ1:n
21

∫ t+

t−
F1:n

c1
dt+ Φ1:n

22

∫ t+

t−
F1:n

c2
dt+ Φ1:n

23 ] = 0 (65)

Substituting the expressions for the constraint impulse from equation(61) into the equations (64-65) one
obtains

(D1
t+)T Φ1:n

11 D
1
t+

∫ t+

t−
F1:n

c1
dt+ (D1)T Φ1:n

12 D
2
t+

∫ t+

t−
F1:n

c2
dt+ (D2

t+)T Φ1:n
13 = 0 (66)

(D2
t+)T Φ1:n

21 D
1
t+

∫ t+

t−
F1:n

c1
dt+ (D2

t+)T Φ1:n
22 D

2
t+

∫ t+

t−
F1:n

c2
dt+ (D2

t+)T Φ1:n
23 = 0 (67)

In these equations, the terms (D1
t+)T Φ11

1:nD1
t+ and (D2

t+)T Φ22
1:nD2

t+ are symmetric positive definite
(SPD) matrices and there is no problem associated with their inversion. For notational convenience, the
above equations can be represented compactly in matrix form as[

χ11 χ12

χ21 χ22

][∫ t+

t− F1:n
c1
dt∫ t+

t− F1:n
c2
dt

]
= −

[
χ13

χ23

]
(68)

where the corresponding χij can be derived from above equations. The matrix in (68) is SPD with χ12 =
χT

21 and hence the set of equations can be easily solved. Having solved the above equations for the values of∫ t+

t− F1:n
c1
dt and

∫ t+

t− F1:n
c2
dt, the corresponding expression for

∫ t+

t− F
1:n
c1
dt and

∫ t+

t− F
1:n
c2
dt can be obtained from

equation(61). At this point, both impulsive constraint loads on the boundary joints are known. Consequently,
the equation(57-58) of the root node can be solved to obtain the jumps in the spatial velocities i.e. ∆V1:n

1
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and ∆V1:n
2 at the corresponding joints. This scheme is similar to the [23] for solving the equations of motion

of constrained rigid body systems

Thus in all three cases, the jumps in the spatial velocities and the constraint impulses at the boundary
joints can be calculated. This initiates the hierarchic disassembly process. The jumps in the spatial velocities
and the constraint impulses generated by solving the spatial impulse-momentum equations of an assembly
are identically the values of the jumps in the spatial velocities and the constraint impulses on one handle
on each of the two constituent assemblies. From these known quantities, the spatial impulse-momentum
equations of the constituent assemblies can be solved to obtain the jumps in the spatial velocities and the
constraint impulses at the connecting joint. For example, for a representative assembly made from body k
and body k+1, the spatial impulse-momentum equations are given by equations (36-37). On solving these
equations the quantities ∆Vk

1 , ∆Vk+1
2 ,

∫ t+

t− F
k
c1
dt and

∫ t+

t− F
k+1
c2

dt are generated. These quantities are then
substituted into the spatial impulse-momentum equations of the constituent sub-assemblies say for body k
and body k+1. Thus knowing the values of ∆Vk

1 ,
∫ t+

t− F
k
c1
dt, equations (17-18) can be solved, while from

∆Vk+1
2 and

∫ t+

t− F
k+1
c2

dt equations (19-20) can be solved. This process is repeated in a hierarchic disassembly
of the binary tree where the known boundary conditions are used to solve the impulse-momentum equations
of the immediate subassemblies, until jumps in the generalized speeds and constraint impulses on all bodies
in the system are calculated.

Similar to the scheme in [22]-[23], this algorithm works in four sweeps, traversing the system topology
like a binary tree. The first and the third sweep work from the leaf nodes of the binary tree to the root node
while the second and the fourth sweep work from the root node to the leaf nodes. The input to this algorithm
is comprised of the mass properties of the bodies, joint generalized coordinates and speeds. The first two
sweeps generate the position and velocity of each handle on each node by using an assembly-disassembly
process similar to that described in [22]-[23]. The final two sweeps correspond to the hierarchic assembly
and the hierarchic disassembly processes respectively.

Singular Configurations

Singular configurations and constraint violation are numerical issues typically encountered in constrained
multibody systems. When a system enters a singular configuration, the constraint equations become numer-
ically dependent and the traditional formulations are unable to solve the governing equations. To circumvent
this problem, computationally expensive procedures such as singular value decompositions have to be used
to solve the equations. Even if the system is not in a true singular configuration, the equations become
significantly ill conditioned and result in significant constraint violation. Constraint violation is encountered
because the constraints are typically imposed at the acceleration level and results in two zero eigenvalues
corresponding to each level of temporal integration. This introduces drift in the constraint equations and
these subtle violations accumulate over several temporal integration steps. To alleviate this problem, con-
straints stabilization techniques [27]-[28] have been proposed which compensate for the drift in the constraint
equations. However these too can be computationally expensive.

The algorithm presented in this paper is able to simulate systems with singular configurations without
running into these problem. This is because neither does the formulation construct a constraint matrix
nor does it use dependent and independent coordinates. The algorithm presented uses a redundant set of
generalized coordinates, but does not carry along a companion set of algebraic constraint equations. There
is thus no constraint Jacobian to lose rank, but individual joint constraints are enforced implicitly through
the joint space map P . This manner in which this method avoids singularities appears similar in some
regards to that with Euler parameters. With Euler parameter, one deals with a redundant four member set
of generalized coordinates (parameters) for the global and nonsingular description of general spatial rotation.
The constraint between these four coordinates are implicitly enforced. If the constraint were explicitly used
to reduce out the extra generalized coordinate (parameter), the representation again may become singular.
In the same manner the algorithm presented here retains an extra set of variables and implicitly enforces the
constraints. Thus, since the dimensionality of the problem never changes, the algorithm is free from rank
deficiency issues with all matrices to be inverted remaining positive symmetric definite.

It is commonly perceived that singularity is an inherent feature of a system and not just a numerical
artifact and hence cannot be circumvented. This is true if the system enters the singular configuration under
such conditions that the momentum of the system at the singular configuration is zero. In such a case, there
is no unique solution and it represents the inherent singular nature of the system. However if the system
enters the singular configuration with non-zero momentum, the state of the system as it exits the singular
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Figure 3: System with Joint Lock

configuration is unique and is a function of the momentum of the system. In this case, the singularity is not
an inherent feature of the system but rather a numerical artifact observed in most traditional schemes. The
algorithm presented here will correctly identify the state of the system as it exits the singular configuration
based on the non-zero momentum of the system as it entered the singular configuration.

Numerical Test Cases

Two test cases were simulated using the algorithm to ascertain the validity of the method. Discussed in this
section are the details of the test cases, the numerical results obtained and the associated discussion on the
performance of the algorithm.

Joint Locking

This test case was chosen to validate the ability of the method to simulate systems undergoing joint locking
i.e. a system where a joint definition is discontinuously altered. This system consists of four rigid bodies
with consecutive bodies connected to each other by revolute joints to form a serial chain topology as shown
in the figure. The first body is also connected to the inertial reference frame by a revolute joint. The system
is started from rest at the beginning of the simulation and swings freely under the effect of gravity. At
a randomly chosen instant, the joint between the second and third body in the system is instantaneously
locked i.e. it does not allow any relative motion between the two bodies. This locking of the joints introduces
an impulsive load on each body in the system resulting in jumps in the remaining generalized speeds. The
system continues to move under the effect of gravity albeit, with a reduced number of degrees of freedom
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Figure 4: System with Joint Lock

because of the locked joint between bodies two and three.
Each body in the system is modelled as a slender steel bar (ρ = 7860kg/m3) of dimensions 1m× 1mm×

1mm. The simulation is started with all generalized coordinates set at π/3 and generalized speeds equal to
zero. The system moves under gravity for 0.71768 seconds at which point the joint between bodies 2 and 3
is instantaneously locked. The simulation is then carried on for the modified system for a total simulation
time of 1.5 seconds. In the figure (3), the values of the generalized coordinates and speeds of the system are
plotted for the duration of the simulation. The instant of the joint locking is shown explicitly.

Topology Change

The second test case was chosen to simulate changes in topology of a system. The system is similar to the
previous test case i.e it is made up of four rigid bodies connected by revolute joints to form a serial chain
topology. The system starts from rest and swings under the effect of gravity. At a randomly chosen instant
during the temporal simulation, the last body in the system is instantaneously connected to the inertial
frame by a revolute joint. This reduces the system instantaneously from a serial chain to a kinematically
closed loop configuration. After the event, the system continues to swing under gravity albeit with the first
and last body in the system connected to the inertial frame. The system description and starting conditions
for this test case are identical to the first test case discussed above. At a randomly chosen instant of t=0.7s,
the last body of the system is instantaneously anchored to the inertial frame by a revolute joint. The values
of the generalized coordinates and speeds are plotted in figure (4).
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Figure 5: Representation of Rhodopsin Protein

Coarse-graining in Molecular Dynamics System

While the two examples presented above are traditional multibody dynamics systems, an application is
presented in this subsection associated with the use of this algorithm for coarse-graining molecular dynamics
systems. This test case is aimed at correctly modelling systems where a number of kinematic constraints are
simultaneously and instantaneously imposed on an initially unconstrained system in 3 dimensional space.
The system studied is the Rhodopsin protein which is a G-protein coupled receptor with a defined tertiary
structure. A cartoon representation of the protein is shown in figure (5). It is a good example to study
transduction and a large amount of experimental results are available about its structure and function. It’s
light driven photo-cycle plays an essential role in generating visual response. In prior studies [29] it has been
found to demonstrate relative rigid body motion between residues.

The fully atomistic model of the Rhodopsin protein consists of more than 5000 atoms. Based on the
findings of [29], it is desired to coarse-grain the fully atomistic domain in two stages to a reduced order
articulated multi-rigid body system. The first step is to coarse-grain the atomistic system into 26 uncoupled
(discrete) rigid bodies that interact only through non-inertial interatomic forces. From the dynamics per-
spective, this is a simple process of aggregation were the mass, mass moments of inertia, velocity of center of
mass and angular velocity of the discrete rigid bodies can be easily generated from the data for the atomistic
system by taking the appropriate summations and moments. Although this is a coarse-grained model, this
discrete rigid body model still includes some stiff interatomic forces which limit the integration time step.
Consequently, the next step in coarse-graining is to move to an articulated multi-rigid body model where
the stiff interatomic forces are replaced by imposing constraints.

During the transition, the relative translational motion of consecutive bodies is constrained by imposing
kinematic joints between successive bodies. Each kinematic joint is modelled as a spherical joint which in-
stantaneously constraints the relative translation while allowing for relative rotation between two consecutive
bodies. This instantaneous change in the system degrees of freedom introduces impulsive loads at each joint
resulting in discontinuous jumps in the remaining generalized speeds. The articulated multi-rigid body model
of the system consists of a free floating chain where the first (or last) body in the chain moves relative to the
inertial reference frame by 3 translational and 3 rotational degrees of freedom while each successive body
moves relative to its parent body by only 3 rotational degrees of freedom. In the discrete rigid body system,
the generalized coordinates and generalized speeds used to model the orientation, position, translational and
angular for individual bodies were associated with the absolute coordinates of the bodies. However, in the
articulated system, the generalized coordinates are used to map the relative orientations and positions of
the bodies. Similarly, the generalized speeds model the relative angular velocities between two consecutive
bodies. Thus the system model transitions between two completely different set of generalized coordinates
and speeds.

The figure (6) shows the variations in the magnitude of translational momentum of the system as it
transitions between the three models viz. fully atomistic, discrete rigid bodies and articulated rigid bodies.
It also shows the kinetic energy of the system as it transitions from the discrete rigid body model to the
articulated multi-rigid body model. The impulsive loads applied to coarse-grain the system are all internal
to the system. Consequently, the momentum of the system is expected to be conserved and it is captured
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Figure 6: Translational Momentum and Kinetic Energy of Different Models

Figure 7: Step Changes in Translational and Angular Velocities of Representative Bodies

accordingly in the results of the simulations. The plots shows 10 integration steps with the three different
models and the magnitude of the translational momentum remains conserved in these transitions. The
components of the momentum along the different axes are also conserved but not shown here for clarity. As
the system is being coarse-grained, a certain amount of kinetic energy of the system is expected to be lost.
This aspect is demonstrated in the plot for kinetic energy where a step change in the energy is observed as
the system transitions from the discrete to articulated models.

Further, as the system is subjected to impulsive loads, the angular and translational velocities of the
bodies is expected to undergo a step change. This behavior is also captured in the implementation of this
algorithm and the figure (7) shows the variations in the magnitude of the translational velocity of the center
of mass and the angular velocity of four representative bodies in the system.

Discussion

For the three systems simulated, the method was able to accurate simulate the instantaneous transitions in
system description through a generalized impulse-momentum formulation in a divide and conquer scheme.
The calculation of the jumps in the generalized speeds is computationally efficient, incurring O(n) and
theoretically O(log(n)) in serial and parallel implementation. The first test case is a traditional problem
which has been simulated previously [20] as a reduced model of a solar panel. The method is able to simulate
this system correctly. The generalized speed associated with the locked joint goes to zero while there is a
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discontinuous jump in remaining generalized speeds. At the instant of the joint lock, there is no change in
the generalized coordinates. However following the event, the discontinuous jump in the generalized speeds is
propagated through temporal integration and its effect is observed in the generalized coordinates as well. As
expected, there is no change in the value of the generalized coordinate and the generalized speed associated
with the locked joint during the remainder of the simulation. The remaining generalized coordinates and
speed continue to change in a smooth continuous manner as the modified system moves under gravity.

The results of the second test case affirm the ability of the formulation to simulate an instantaneous
change in system definition from serial chain to a closed loop topology. The instantaneous anchoring of the
final body results in an impulsive load on the body from the inertial frame which instantaneously constrains
out the translational motion of the last body relative to the inertial frame. This impulsive load is propagated
through the system as constraint impulses at the joints and results in discontinuous jumps in the values of
the generalized speeds. At the instant of anchoring, there is again no change in the generalized coordinates
but the effects of temporal integration of the discontinuous change in generalized speeds is observed in the
system behavior after the event.

The third system studied is an application of model resolution change where a molecular dynamics system
is transitioned through three different models. This model resolution change includes impulsive events at
each joint of the 25 joints between the bodies in the system. In this study, only a small representative
simulation was carried with only a total of 30 integration steps and only a single transition from discrete
to articulated model. An actual simulation of significance involves approximately 109 integration steps and
includes many different model resolution changes. The results presented here are for demonstrating the
validity of the algorithm.

For the systems simulated, the generalized momenta of the system is expected to be conserved. All the
impulsive loads acting on the system are constraint loads which are contained in the space orthogonal to
the subspace of admissible motion of the system as spanned by the partial velocities of the system after an
event [30]. Hence the projection of the momentum of the system before and after the event into the space of
admissible motion after the event must be equal. The validity of the simulations is observed by plotting the
generalized momenta of the system during the simulation. The results obtained from the implementation
of the test cases clearly capture the conservation of the generalized momenta of the system. In all cases,
the generalized momenta associated with the unaffected generalized speeds vary in a smooth continuous
manner and remain conserved during the event. In the molecular dynamics system, only the translational
momentum of the system is shown.

An important question that arises from using this algorithm is related to identifying where and when
the model transition is warranted. A likely answer to this would be the usage of event prediction schemes
which typically work in tandem with the temporal integration schemes. These are widely used for modelling
impact between many bodies, for example in granular material modelling. Indeed, for the systems similar
to the first two systems studied in this work, an event prediction scheme would be required when applied
for generalized usage. However, for molecular dynamics systems, the application of this algorithm is not for
impact modelling and hence the traditional event prediction schemes are not appropriate. In such cases,
two possible methods may be used to identify where and when to introduce the model transitions. The
first is based on analysts’ experience with the systems, where the large volume of experimental data on
these systems and their structural information may be used to identify when and where to introduce the
model transitions. The second approach is based on using concurrent analysis tools and adaptive metrics
such as error indicators which monitor the system behavior based on its current and past states during the
course of a temporal simulation and provide important information on where and when to apply the model
transitions. Such schemes have been developed in other areas of computational mechanics such as in finite
element methods [31] and are a major focus of research for molecular dynamics systems. While the validity
and efficacy of these methods are pertinent questions, they not relevant to the scope of this current work.
The method developed here is focussed on how to correctly coarse-grain the models by imposing kinematic
constraints such that the resulting model is kinematically correct and conserves essential dynamics.

Conclusions

A methodology is outlined in this paper which is is able to accurately and efficiently simulate discontinuous
changes in system definition for multibody dynamics systems. The method accommodates the discontinuous
changes by reformulating joint definitions locally within the affected bodies, without having to reformulate
the equations for the entire system. As demonstrated, the changes in system definition are modelled through
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the use of joint motion maps and impulsive constraint loads. This is implemented in an efficient divide and
conquer formulation to provide linear and logarithmic complexity for serial and parallel implementations
respectively. The method can also accommodate systems with singular configurations. Results from simula-
tions of two test cases are shown which demonstrate the validity of the method for systems with unilateral
constraints and systems with both unilateral and bilateral constraints. An application in molecular dynamics
simulations for model resolution changes is also demonstrated.
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