
IEEE Transactions on System, Man and Cybernetics, vol. 23, pp. 239-248, Jan. 1993

Linearization of Manipulator Dynamics Using
Spatial Operators

A. Jain and G. Rodriguez

Jet Propulsion Laboratory/California Institute of Technology

4800 Oak Grove Drive, Pasadena, CA 91109

Abstract

Linearized dynamics models for manipulators are useful in robot analysis, motion planning,

and control applications. In this paper we use techniques from the spatial operator algebra to ob-

tain closed form operator expressions for two types of linearized dynamics models, the Linearized

Inverse and Forward Dynamics Models. We �rst develop spatially recursive algorithms of O(n) and

O(n2) complexity for the computation of the perturbation vector and coe�cient matrices for the

Linearized Inverse Dynamics Model. Subsequently, operator factorization and inversion identities

are used to develop corresponding closed form expressions for the Linearized Forward Dynamics

Model. Once again, these are used to develop algorithms of O(n) and O(n2) complexity for the

computation of the perturbation vector and the coe�cient matrices. The algorithms for the Lin-

earized Forward Dynamics Model do not require the explicit computation of the mass matrix nor

its numerical inversion and are also of lower complexity than the conventional O(n3) algorithms.

1 Introduction

Linearized dynamics models for manipulators are useful in robot analysis, motion planning, and

control applications [1]. Optimal trajectory design methods for manipulators require the minimiza-

tion of a trajectory cost function [2]. The trajectory cost gradient needed during the optimization

process is obtained using linearized dynamics models. Trajectory sensitivity models are obtained by

driving linearized dynamics models with gradients of the nonlinear forces with respect to the manip-

ulator parameters [3, 4]. These sensitivity models relate the errors/uncertainties in the kinematical

and inertial manipulator model parameters to errors in the trajectory. In the face of uncertainties,

such as from payload variations and friction, \linear" feedback control based on linearized dynamics

models in combination with nonlinear feedforward control can be used to enhance robot perfor-

mance. Linearized dynamics models are also used for adaptive control of manipulators [5], nonlinear

decoupling and control in the presence of actuator dynamics [6], and for system identi�cation.

In this paper, techniques from the spatial operator algebra [7] are used to derive closed

form operator expressions and new recursive algorithms for linearized dynamics models for robot

manipulators. The spatial operator algebra is a robot modeling and analysis framework that makes

use of spatial operators to provide a compact description of robot dynamics, and to derive e�cient

recursive algorithms for robotics computations.

Linearized models consist of a linearization of the nonlinear dynamics of a manipulator

1

about a nominal trajectory. The nonlinear dynamics of an n degree of freedom robot manipulator

can be expressed in the form:

T (�; _�; ��) =M(�)�� + C(�; _�) (1.1)

where � and T are the vectors of hinge angles and hinge forces respectively,M 2 Rn�n is the mass

matrix and C 2 Rn is the vector of Coriolis and centrifugal hinge torques. A model relating varia-

tions in hinge torques �T to hinge angle perturbations f���; � _�; ��g, is obtained by a linearization of

the nonlinear \inverse dynamics" equation in (1.1). This linearized model is denoted the Linearized

Inverse Dynamics Model and it can be expressed in the form:

�T = [r��
T]��� + [r _�

T]� _� + [r�T]�� (1.2)

where rxy denotes the gradient of y with respect to x.

Previous research has primarily focused on algorithms for computing this linearized model.

Neuman and Murray [4] describe a symbolic method for evaluating the coe�cient matrices in

(1.2). Balafoutis et al [3] developed a recursive, though computationally expensive, algorithm

for computing these matrices. The recursive algorithms of Li [8] and Li et al [9] are based upon

Lagrangian formulations and are of O(n4) and O(n3) complexity respectively. Murray and Johnson

[6] developed a recursive algorithm for computing the vector �T by taking variations of the steps

in the well known recursive Newton{Euler inverse dynamics algorithm [10] for the computation of

the vector of hinge torques T .

We also develop recursive algorithms for computing the perturbation vector �T as well as

the coe�cient matrices in the Linearized Inverse Dynamics Model of (1.2). We �rst obtain spatial

operator expressions for the linearized model. The recursive implementation of these operator

expressions leads to the O(n) Algorithm 1 for the computation of the vector �T . Like the algorithm

in [6] for computing �T , the structure of this algorithm also resembles that of the Newton{Euler

inverse dynamics algorithm. Further decomposition of the spatial operators using the composite

body inertias, forms the basis for the O(n2) Algorithm 2 for computing the coe�cient matrices in

the linearized model. This algorithm is the same as the one described in [9] and its structure closely

resembles that of the composite body algorithm [11] for the computation of the manipulator mass

matrix M. However, the derivation using spatial operators is more straightforward and concise

and makes clear the relationship of this algorithm to other dynamics algorithms.

Some applications in manipulator control also make use of dynamics models that relate

variations in the hinge accelerations ��� to the perturbation vectors f�T; � _�; ��g. This model is a

linearization of the nonlinear \forward dynamics" equation given by

��(�; _�; T) =M
�1[T � C] (1.3)

This linearized model is denoted the Linearized Forward Dynamics Model and can be expressed in

the form:

��� = [rT
��]�T + [r _�

��]� _� + [r�
��]�� (1.4)

The conventional methods for computing the perturbation vector ��� and the coe�cient

matrices in the Linearized Forward Dynamics Model require as intermediate steps the computation

2

Notation

of the Linearized Inverse Dynamics Model, the mass matrix, and the numerical inversion of the

mass matrix [1]. These methods are of O(n3) complexity and are summarized in Algorithms 3

and 4. In contrast, the algorithms we develop compute the Linearized Forward Dynamics Model

directly and do not require the computation of either the Linearized Inverse Dynamics Model, the

mass matrix or the inversion of the mass matrix.

An operator factorization of the mass matrix inverse is used to develop closed form operator

expressions for the coe�cient matrices in the Linearized Forward Dynamics Model. The recursive

implementation of these operator expressions leads to the O(n) Algorithm 5 for the computation

of the perturbation vector ���. This algorithm closely resembles the well known O(n) articulated

body forward dynamics algorithm [12, 7] for the computation of the vector of hinge accelerations
��. Further decomposition of the operator expressions leads to the recursive O(n2) Algorithm 6 for

computing the coe�cient matrices in the Linearized Forward Dynamics Model. This algorithm in

turn closely resembles the recursive algorithm for the direct computation of the inverse of the mass

matrix, M�1.

1.1 Notation

Coordinate free spatial (i.e., 6-dimensional) notation is used throughout this paper (see references

[7, 13] for additional details). The notation ~l (or [l]�) denotes the cross{product matrix associated

with a 3{dimensional vector l, while x� denotes the transpose of a matrix x. For arbitrary 3-

dimensional vectors a and b, we de�ne the functions S and Q as:

S

"
a

b

!#
4
=

~a ~b

0 ~a

!
; Q

"
a

b

!#
4
=

~a ~b
~b 0

!
(1.5)

For arbitrary spatial vectors X and Y

Q[X]Y = �S[Y]X; S
�[X]X = 0; and S

�[X]Y = �S
�[Y]X (1.6)

The function S�[:] has additional interesting properties analogous to those of the cross product

operator for 3-dimensional vectors. De�nitions of some of the key quantities in this paper are

summarized below.

n number of links in the manipulator

Ok the body �xed reference frame for the kth link

I an inertial frame used as a universal velocity reference frame

� 2 Rn , the vector of hinge angles

l(k; j) 2 R3 , the vector from frame Ok to frame Oj

l(I; k) 2 R3 , the vector from frame I to frame Ok

�(a; b)
4
=

I ~l(a; b)

0 I

!
2 R6�6 , the spatial transformation operator from point a to point b

3

H�(k) 2 R6 , the hinge map for the kth hinge referred to frame Ok

H�(k)
4
= ��(Ok;I)H

�(k) 2 R6 , the hinge map for the kth hinge referred to frame I

eH(k) 4
= S�[H�(k)] 2 R6�6

Ml(k) 2 R6�6 , spatial inertia of the kth link referred to frame Ok

M(k)
4
= �(I;Ok)Ml(k)�

�(I;Ok) 2 R
6�6 , spatial inertia of the kth link referred to frame I

V (k) =

!(k)

u(k)

!
2 R

6 , the spatial velocity of the kth link referred to frame I, with !(k)

and u(k) denoting the angular and linear velocity components respectively

�(k) 2 R6 , spatial acceleration of the kth link referred to frame I

f(k) =

N(k)

F (k)

!
2 R6 , the spatial force of interaction between the (k+1)th and the kth link

referred to frame I, with N(k) and F (k) denoting the moment and force components

respectively

T (k) hinge torque for the kth hinge

M 2 Rn�n , the manipulator mass matrix

C 2 Rn , the vector of Coriolis and centrifugal hinge torques for the manipulator

AD; BD 2 Rn�n , the coe�cient matrices for the Linearized Inverse Dynamics Model

AC ; BC 2 Rn�n , the coe�cient matrices for the Linearized Forward Dynamics Model

2 Equations of Motion

We assume that the robot manipulator has n links coupled together by single degree of freedom

rotational hinges. The links on the manipulator are are assigned numbers from 1 thru n in increasing

order from tip to base. To simplify the analysis, we develop the equations of motion for the

manipulator about an inertially �xed coordinate frame I which we refer to as the universal velocity

reference frame.

For any two points a and b, the spatial transformation operator �(a; b) is de�ned as

�(a; b)
4
=

I ~l(a; b)

0 I

!
(2.1)

where l(a; b) denotes the vector from a to b. The spatial inertia Ml(k) of the k
th link about the

body frame Ok is given by

Ml(k) =

Jl(k) m(k)~pl(k)

�m(k)~pl(k) m(k)I

!
(2.2)

4

where m(k) is the mass, m(k)pl(k) is the �rst moment of inertia and Jl(k) is the second moment

of inertia of the kth link about the kth body frame Ok. Using the parallel axis theorem for spatial

inertias [13], the spatial inertia M(k) of the kth link about frame I is given by

M(k) = �(I;Ok)Ml(k)�
�(I;Ok) (2.3)

With frame I as the universal velocity reference frame, the spatial velocity V (k) of the kth link is

written as

V (k) =

!(k)

u(k)

!
(2.4)

with !(k) and u(k) denoting the angular and linear velocity components respectively. Thus

M(k)V (k) is the spatial momentum of the kth link about I. With f(k) denoting the spatial

interaction force between the (k + 1)th and the kth links (referred to frame I), the total external

spatial force on the kth link is given by [f(k)� f(k � 1)]. The equations of motion for the kth link

are thus given by

x(k)
4
=
d[M(k)V (k)]

dt
= f(k)� f(k � 1)

All time derivatives here are with respect to an inertial frame. Rearranging the above,

f(k) = f(k � 1) +M(k)�(k) + _M(k)V (k); where �(k)
4
= _V (k) (2.5)

It can be easily veri�ed that

_M(k) = e
(k)M(k) +M(k)e
�(k) (2.6)

where

e
(k) 4= S[V (k)] =

~!(k) ~u(k)

0 ~!(k)

!

From (1.6) we have that S�[V]V = 0, and thus (2.6) can be rewritten as

_M(k)V (k) = M̂(k)V (k) (2.7)

where M̂(k) is given by

M̂(k)
4
=

1

2

h
_M(k)�Q[M(k)V (k)]

i
(2.8)

Thus from (2.5) it follows that

f(k) = f(k � 1) +M(k)�(k) + M̂(k)V (k) (2.9)

The hinge map H�(k) characterizes the relative spatial velocity H�(k) _�(k) across the kth hinge with

Ok as the velocity reference frame. With frame I as the velocity reference frame, the corresponding

hinge map H�(k) is given by

H
�(k) = ��(Ok;I)H

�(k) (2.10)

and the relative spatial velocity across the hinge is H�(k) _�(k). The link spatial velocities V (k)

satisfy the recursive relationship

V (k) = V (k + 1) +H�(k) _�(k) (2.11)

5

Di�erentiating this equation, it follows that the link spatial accelerations �(k) satisfy the recursive

relationship

�(k) = �(k + 1) +H�(k)��(k) + _H�(k) _�(k) (2.12)

It is straightforward to verify that

_H�(k) = �e
�(k)H�(k) = eH(k)V (k) (2.13)

where

eH(k) 4= S
�[H�(k)] (2.14)

By the principle of virtual work, the hinge torque at the kth hinge is given by

T (k) = H(k)f(k) (2.15)

The relationships in (2.9), (2.11), (2.12) and (2.15) lead to the following well known recursive

O(n) Newton{Euler inverse dynamics algorithm for computing the T (k) hinge torques:

8>>>>><
>>>>>:

V (n+ 1) = 0; �(n+ 1) = 0

for k = n � � � 1

V (k) = V (k + 1) +H�(k) _�(k)

�(k) = �(k + 1) +H�(k)��(k) + _H�(k) _�(k)

end loop

(2.16)8>>>>>>><
>>>>>>>:

f(0) = 0

for k = 1 � � �n

x(k) = M(k)�(k) + M̂(k)V (k)

f(k) = f(k � 1) + x(k)

T (k) = H(k)f(k)

end loop

De�ne the block diagonal spatial operatorsH = diag
n
H(k)

o
,M = diag

n
M(k)

o
, M̂ = diag

n
M̂(k)

o
and E�, � as

E� =

0
BBBBBBBB@

0 : : : : : : : : : 0

I 0 � � � � � �
...

0 I 0 � � �
...

...
. . .

. . .
...

0 : : : : : : I 0

1
CCCCCCCCA
2 R

6n�6n; and � =

0
BBBBB@

I : : : : : : 0

I I
...

...
. . .

...

I : : : : : : I

1
CCCCCA 2 R

6n�6n

(2.17)

Note that

� = [I � E�]
�1; and E�� = �E� = �� I

4
= ~� (2.18)

We also de�ne the overall link spatial velocity vector V for the manipulator as

V
4
= [V �(1); � � � ; V �(n)]� = col

n
V (k)

o

6

Thus V is de�ned by stacking up the spatial velocties of each of the links into a single vector. Using

a similar stacking procedure we de�ne the vectors �, f , T etc. Using the spatial operators and the

stacked vectors de�ned above, (2.16) can be reexpressed in the form,

V = ��H� _�

� = ��[H��� + _H� _�] = ��
d[H� _�]

dt

x = M�+ M̂V =
d[M��H� _�]

dt
=
dMV

dt
(2.19)

f = �x = �
d[M��H� _�]

dt

T = Hf = H�
d[M��H� _�]

dt
=M�� + C

where

M(�)
4
= H�M��H�

C(�; _�)
4
= H�

d[M��H�]

dt
_� = H�[M̂V +M�� _H� _�] (2.20)

M 2 R
n�n is the mass matrix for the manipulator and C 2 R

n is the vector of Coriolis and

centrifugal hinge forces. The operator expression for the mass matrix in (2.20) is called the Newton{

Euler Operator Factorization of the mass matrix. Note that the mass matrix M depends on the

hinge angles � alone, while C depends on both � as well as _�.

3 Structure of the Linearized Inverse Dynamics Model

We now linearize the dynamics model in (2.19) about a nominal trajectory point fT; ��; _�; �g. As

described in (1.2), the Linearized Inverse Dynamics Model relates the perturbation vector �T to

perturbation vectors f���; � _�; ��g. Lemma 3.1 below summarizes closed{form operator expressions

for the coe�cient matrices in the Linearized Inverse Dynamics Model.

Lemma 3.1

r��
T = M = H�M��H�

AD
4
= r _�

T = 2H�
h
M̂��H� +M�� _H�

i
BD

4
= r�T = H�

h eHf + 2M̂�� _H� +M�� �H�
i

(3.1)

where

eH 4
= diag

n eH(k)o (3.2)

Proof: SeeAppendix A.

7

Computation of the vector �T

3.1 Computation of the vector �T

From Lemma 3.1 and (1.2) it follows that the expression for �T is given by:

�T = H�

�
M��

n
H
���� + 2 _H�� _� + �H���

o
+ M̂��

n
H
�� _� + _H���

o
+ eHf� (3.3)

The recursive implementation of the operator expression in (3.3) for �T leads to the following

computational algorithm.

8

Computation of the vector �T

Algorithm 1: Algorithm for computing �T

Step 1:

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

V (n+ 1) = 0; �(n + 1) = 0

for k = n � � � 1

H(k) = ��(Ok;I)H
�(k)

V (k) =

!(k)

u(k)

!
= V (k + 1) +H�(k) _�(k)

e
(k) = S[V (k)]
_H�(k) = eH(k)V (k)
�(k) = �(k + 1) +H�(k)��(k) + _H� _�(k)
�H�(k) = eH(k)�(k) � e
�(k) _H�(k)
M(k) = �(I;Ok)Ml(k)�

�(I;Ok) =

J (k) m(k)~p(k)

�m(k)~p(k) m(k)I

!

M̂(k) =

~!(k)f1

2
Tr[J (k)]I � J (k)g �m(k)~p(k)~u(k) 0

�m(k)[u(k) + ~!(k)p(k)]� 0

!

end loop

Step 2:

8>>>>><
>>>>>:

�(n+ 1) = 0; #(n+ 1) = 0

for k = n � � � 1

�(k) = �(k + 1) +H�(k)���(k) + 2 _H�(k)� _�(k) + �H�(k)��(k)

#(k) = #(k + 1) +H�(k)� _�(k) + _H�(k)��(k)

end loop

(3.4)

8>>>>>>>><
>>>>>>>>:

f(0) = 0; �(0) = 0

for k = 1 � � �n

f(k) = f(k � 1) +M(k)�(k) + M̂(k)V (k)

�(k) = �(k � 1) +M(k)�(k) + M̂(k)#(k) + eH(k)f(k)
�T (k) = H(k)�(k)

end loop

(3.5)

The base-to-tip recursions in (3.4) and (3.4) can be merged into a single base-to-tip recursion. Over-

all, this algorithm requires a base-to-tip recursion followed by a tip-to-base recursion to compute

�T . It is of O(n) complexity with cost

[320n � 159]M + [303n� 149]A

where M and A denote multiplication and addition oating point operations respectively. The

structure of this algorithm closely resembles that of the well known O(n) Newton{Euler inverse

dynamics algorithm [10]. Reference [6] describes a di�erent recursive algorithm for computing �T

which is similar in structure to the Newton{Euler inverse dynamics algorithm.

9

Computation of the Coe�cient matrices M; AD and BD

3.2 Computation of the Coe�cient matricesM; AD and BD

The operator expressions for the coe�cient matrices M; AD and BD in Lemma 3.1 can be de-

composed into lower and upper{triangular components. These decompositions are more suited for

implementation via recursive algorithms and are described below in Lemma 3.2.

Lemma 3.2

M = H

h
�R+R~��

i
H
�

AD = 2H�
h
R _H� + R̂H�

i
+ 2H

h
R~�� _H� + R̂~��H�

i
(3.6)

BD = H�
h eHf + 2R̂ _H� +R �H�

i
+H

h
2R̂~�� _H� +R~�� �H�

i

where

R(k)
4
=

kX
j=1

M(k); R̂(k)
4
=

kX
j=1

M̂(k) (3.7)

and R
4
= diag

n
R(k)

o
, R̂

4
= diag

n
R̂(k)

o
.

Proof: SeeAppendix A.

Note that R(k) is the composite body inertia about frame I of all the links outboard of

the kth hinge. These expressions directly lead to the following O(n2) algorithm for computing the

coe�cient matrices in the Linearized Inverse Dynamics Model.

10

Computation of the Coe�cient matrices M; AD and BD

Algorithm 2: Algorithm for computing M; AD and BD

Step 1: Carry out the base-to-tip recursion in (3.4).

Step 2:

8>>><
>>>:

f(0) = 0; R(0) = 0; R̂(0) = 0

for k = 1 � � �n

f(k) = f(k � 1) +M(k)�(k) + M̂(k)V (k)

R(k) = R(k � 1) +M(k)

R̂(k) = R̂(k � 1) + M̂(k)

X(k) = R(k)H�(k)

X̂(k) = 2R̂�(k)H�(k)

XA(k) = 2[R(k) _H�(k) + R̂(k)H�(k)]

XB(k) = 2R̂(k) _H�(k) +R(k) �H�(k) + eH(k)f(k)
M(k; k) = H(k)X(k)

AD(k; k) = H(k)XA(k)

BD(k; k) = H(k)XB(k)8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

for j = k + 1 � � �N

M(j; k) = M(k; j) = H(j)X(k)

AD(j; k) = H(j)XA(k)

BD(j; k) = H(j)XB(k)

AD(k; j) = 2 _H(j)X(k) +H(j)X̂(k)

BD(k; j) = �H(j)X(k) + _H(j)X̂(k)

end loop

end loop

(3.8)

Step 2 of this algorithm proceeds from tip-to-base and recursively computes the diagonal elements

of the coe�cient matrices M, AD and BD. As each new diagonal element is computed, a fresh

recursion is started to compute the o�-diagonal elements of the matrices. This algorithm is of

O(n2) complexity. This algorithm is closely related in structure to the O(n2) composite body

algorithm for computing the mass matrix [11, 14]. The computational cost of this algorithm is

[21n2 + 333n� 132]M + [47n2=2 + 605n=2 � 145]A

The coe�cient of the n2 terms are much smaller than those for the O(n2) algorithm described in

[1]. Apart from some minor di�erences, this algorithm is the same as the algorithm described in [9]

for computing the coe�cient matrices for the Linearized Inverse Dynamics Model. However, using

spatial operators, the derivation here is more straightforward and the relationship of this algorithm

to standard dynamics algorithms and other linearization algorithms is clari�ed.

11

4 Structure of the Linearized Forward Dynamics Model

The algorithms described so far have been for computing the Linearized Inverse Dynamics Model.

In the following sections we develop computational algorithms for the Linearized Forward Dynamics

Model. This linearized dynamics model, described by (1.4), relates the perturbation vector ��� to

perturbation vectors f�T; ��; � _�g about a nominal trajectory point T; �; _�; ��. It is a linearization of

the nonlinear \forward" dynamics model given by

��(�; _�; T) =M
�1[T � C] (4.1)

The coe�cient matrices in this model are closely related to the coe�cient matrices in the Linearized

Inverse Dynamics Model as described in the following lemma.

Lemma 4.1

rT
�� = M

�1

AC
4
= �r _�

�� =M
�1AD

BC
4
= �r�

�� =M
�1BD (4.2)

Proof: These follow from straightforward algebraic manipulation.

The conventional methods for the computation of the Linearized Forward Dynamics Model

are based upon Lemma 4.1, and require the computation of the Linearized Inverse Dynamics

Model, the mass matrix and the numerical inversion of the mass matrix. These methods for the

computation of the vector ��� and of the coe�cient matrices M�1; AC and BC are summarized

below in Algorithms 3 and 4 respectively.

Algorithm 3: Algorithm for computing ���

Step 1: Compute the vector � = AD� _� +BD�� using Algorithm 1 (by setting ��� = 0).

Step 2: Compute the mass matrix M using the steps in Algorithm 2.

Step 3: Solve the linear matrix equation M��� = [�T � �] for ���.

The computational cost of this algorithm is

[n3=6 + 3n2=2 + 952n=3 � 153]M + [n3=6 + n2 + 1805n=6 � 147]A

Algorithm 4: Algorithm for computing M�1, AC and BC

Step 1: ComputeM, AD, and BD using Algorithm 2 for the Linearized Inverse Dynamics Model.

12

Factorization and Inversion of the Mass Matrix

Step 2: Numerically compute the matrix inverse of M.

Step 3: Compute matrix products to obtain AC =M�1AD and BC =M�1BD via matrix prod-

ucts.

The computational cost of this algorithm is

[17n3=6 + 43n2=2 + 998n=3 � 132]M + [17n3=6 + 20n2 + 1819n=6 � 145]A

The inversion of the mass matrix and the formation of matrix products are steps of O(n3) complexity,

and thus so is the cost of Algorithms 3 and 4.

The algorithms for the computation of the Linearized Forward Dynamics Model that we

derive below do not require either the inversion of the mass matrix, nor the computation of

the Linearized Inverse Dynamics Model. The algorithm for the computation of ��� is of only

O(n) complexity while the one for the computation of the coe�cient matrices is of O(n2) complexity.

The derivation of these algorithms uses operator factorization and inversion results for the mass

matirx which have been described in detail in reference [7]. We briey summarize these results in

the next section.

4.1 Factorization and Inversion of the Mass Matrix

First we de�ne the articulated body inertias P (:) and related quantities via the following tip-to-base

recursive equations:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

P (0) = 0

for k = 1 � � �n

P (k) = (k; k � 1)P (k � 1) +M(k)

D(k) = H(k)P (k)H�(k)

G(k) = P (k)H�(k)D�1(k)

K(k + 1; k) = G(k)

�(k) = G(k)H(k)

�(k) = I � �(k)

 (k + 1; k) = �(k)

end loop

(4.3)

De�ne P
4
= diag

n
P (k)

o
, and similarly the block diagonal operators D;G; � and � . Also de�ne

E = E�� ; and K = E�G

Note that the only nonzero elements of E and K are the (k + 1; k) elements along the �rst lower

subdiagonal and these are given by the elements �(k) and G(k) respectively. It is easy to verify

that the de�nitions in (4.3) can be rewritten using spatial operators in the following manner:

P = E PE
�

� +M; D = HPH�

G = PH�D�1; � = GH; � = I � �

13

Factorization and Inversion of the Mass Matrix

Like E�, E is also nilpotent (En = 0), and so analogous to � we de�ne as

4
= (I � E)

�1 (4.4)

Like �, the operator is also block lower-triangular and the (k; j)th element (k; j) 2 R
6�6 is

given by

 (k; j)
4
=

8><
>:

0 for k < j

I for k = j

 (k; k � 1) � � � (j + 1; j) for k > j

(4.5)

Lemma 4.2 below describes the Innovations Operator Factorization of the mass matrix M, which

is an alternative to the Newton{Euler Operator Factorization in (2.20). The factors in this new

factorization are square and invertible. This result is followed by lemmas describing closed form

expressions for the inverse of the factors and �nally an operator expression for the mass matrix

inverse.

Lemma 4.2 The Innovations Operator Factorization of the mass matrix M is as follows:

M = [I +H�K]D[I +H�K]�; (4.6)

Proof: SeeAppendix A.

Lemma 4.3 The inverse of the operator [I +H�K] is given by

[I +H�K]�1 = [I �H K] (4.7)

Proof: SeeAppendix A.

Lemma 4.4 The closed form operator expression for the mass matrix inverse is given by

M
�1 = [I �H K]�D�1[I �H K] (4.8)

Proof: This follows directly from Lemmas 4.2 and 4.3.

Two useful operator identities are given in the following lemma.

Lemma 4.5

[I �H K]H� = H

M
�1
H�M�� = [I �H K]�D�1H P +K� � (4.9)

14

Factorization and Inversion of the Mass Matrix

Proof: SeeAppendix A.

From (2.20), (4.9) and (4.8) it follows that,

�� = M
�1(T � C) = [I �H K]�D�1[I �H K](T � C) (4.10)

= [I �H K]�D�1
h
T �H fKT + M̂V + P _H� _�g

i
�K� � _H� _�

The recursive implementation of (4.11) forms the basis for the O(n) articulated body forward

dynamics algorithm for robot manipulators [12, 7]. Using the above operator factorization and

inversion lemmas, the following lemma describes operator expressions for the coe�cient matrices

in the Linearized Forward Dynamics Model.

Lemma 4.6

M
�1 = [I �H K]�D�1[I �H K]

AC = 2[I �H K]�D�1H
h
M̂��H� + P _H�

i
+ 2K� � _H� (4.11)

BC = [I �H K]�D�1H
h eHf + 2M̂�� _H� + P �H�

i
+K� � �H�

Proof: These results follow directly from Lemma 4.4, Lemma 4.5, Lemma 4.1 and (4.9).

These expressions can be simpli�ed even further. First, recursively de�ne the following

quantities: 8>>>>>>>><
>>>>>>>>:

P̂ (0) = 0

for k = 1 � � �n

P̂ (k) = (k; k � 1)P̂ (k � 1) + M̂(k)

Ĝ(k) = P̂ (k)H�(k)D�1(k)

K̂(k + 1; k) = Ĝ(k)

end loop

(4.12)

De�ne the block diagonal operators P̂
4
= diag

n
P̂ (k)

o
and Ĝ

4
= diag

n
Ĝ(k)

o
. Also de�ne

K̂ = E�Ĝ

As in the case of the operator K, the only nonzero elements of K̂ are those along the �rst lower

subdiagonal and are given by the elements Ĝ(k). The expressions for the coe�cient matrices in

Lemma 4.6 can be written in a simpler form as described in the following lemma.

Lemma 4.7

M
�1 = [I �H K]�D�1[I �H K]

AC = [I �H K]�
h
D�1H YA + 2K̂���H�

i
+ 2K� � _H� (4.13)

BC = [I �H K]�
h
D�1H YB + 2K̂��� _H�

i
+K� � �H�

where

YA
4
= 2[P̂H� + P _H�]; and YB

4
= 2P̂ _H� + P �H� + eHf (4.14)

Proof: SeeAppendix A.

15

Computation of the Vector ���

4.2 Computation of the Vector ���

From Lemma 4.7 and (1.4) it follows that the operator expression for ��� is given by:

��� = [I �H K]�
�
D�1

n
�T �H [K�T + YA� _� + YB��]

o
� 2K̂���(H�� _� + _H���)

�

�K� �[2 _H�� _� + �H���] (4.15)

The recursive implementation of this operator expression leads to the following O(n) algorithm for

computing ���.

16

Computation of the Vector ���

Algorithm 5: Algorithm for computing ���

Step 1: Carry out the base-to-tip recursive sweep in (3.4).

Step 2:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

f(0) = 0; P (0) = 0; P̂ (0) = 0

for k = 1 � � �n

f(k) = f(k � 1) +M(k)�(k) + M̂(k)V (k)

P (k) = �(k � 1)P (k � 1) +M(k)

D(k) = H(k)P (k)H�(k)

G(k) = P (k)H�(k)D�1(k)

�(k) = I �G(k)H(k)

P̂ (k) = �(k � 1)P̂ (k � 1) + M̂(k)

Ĝ(k) = P̂ (k)H�(k)D�1(k)

YA(k) = 2[P̂ (k)H�(k) + P (k) _H�(k)]

YB(k) = 2P̂ (k) _H�(k) + P (k) �H�(k) + eH(k)f(k)
end loop

(4.16)

Step 3:

8>>>>>>><
>>>>>>>:

z+(0) = 0

for k = 1 � � �n

z(k) = z+(k � 1) + YA(k)� _�(k) + YB(k)��(k)

�(k) = �T (k)�H(k)z(k)

z+(k) = z(k) +G(k)�(k)

end loop

(4.17)

8>>>>>>>>>>>><
>>>>>>>>>>>>:

#(n+ 1) = 0; �(n+ 1) = 0

for k = n � � � 1

�(k) = D�1(k)�(k) � 2G�(k)#(k + 1)

�+(k) = �(k + 1)

���(k) = �(k)�G�(k)�+(k)

�(k) = �+(k) +H�(k)���(k) + 2 _H�(k)� _�(k) + �H�(k)��(k)

#(k) = #(k + 1) +H�(k)� _�(k) + _H�(k)��(k)

end loop

(4.18)

Note that the recursions in (4.16) and (4.17) can be combined into a single tip-to-base recursion.

This algorithm is of O(n) complexity and its cost is

[259n � 129]M + [232n� 123]A

Its structure is closely related to that of the O(n) articulated body forward dynamics algorithm

[12, 7].

17

Computation of the Coe�cient matrices M�1; AC and BC

4.3 Computation of the Coe�cient matricesM�1; AC and BC

In this section we develop an O(n2) recursive computational algorithm for computing the coe�cient

matrices M�1; AC and BC . First the quantities �(k)'s are de�ned via the following recursion

sequence: 8>>>>><
>>>>>:

�(n+ 1) = 0

for k = n � � � 1

�+(k) = �(k + 1)

�(k) = ��(k)�+(k)� (k) +H�(k)D�1(k)H(k)

end loop

(4.19)

De�ne � = diag
n
�(k)

o
and �+ = diag

n
�+(k)

o
= E�

�
�E�. We now have an operator decompo-

sition result [7] described in the following lemma.

Lemma 4.8

 �H�D�1H = �+ ~ ��+� ~ ; where ~
4
= � I (4.20)

Proof: SeeAppendix A.

Note that in the �rst equation in (4.20), � is block diagonal, while the other terms are

upper and lower triangular respectively. The decomposition in (4.20) leads to decompositions of

the operator expressions in Lemma 4.6 for the coe�cient matrices of the Linearized Forward Dy-

namics Model. These new expressions, described in the lemma below, involve only block diagonal,

block lower-triangular and block upper-triangular matrices and are in a form suitable for recursive

computation.

Lemma 4.9

M
�1 = L�K� �U� � U K

AC = U YA +K� �EA +Q���H�

BC = U YB +K� �EB +Q��� _H� (4.21)

where

�̂
4
= ĜH

Ĵ(k)
4
= �(k + 1; k)Ĵ (k + 1) + �̂�(k); Ĵ(n+ 1) = 0

Ĵ
4
= diag

n
Ĵ(k)

o
(4.22)

L
4
= D�1 +G��+G

U
4
= D�1H�G��+� = LH�G��+

EA
4
= 2 _H� ��YA + 2ĴH�

EB
4
= �H� ��YB + 2Ĵ _H�

Q
4
= 2[K̂ � Ĵ�K]

18

Computation of the Coe�cient matrices M�1; AC and BC

Proof: SeeAppendix A.

Like the operator K, the only nonzero elements of Q are along its �rst lower sub-diagonal

and these are given by

Q(k + 1; k) = 2
h
Ĝ(k)� Ĵ�(k + 1)G(k)

i
On the other hand, L;U;EA and EB are all block{diagonal matrices. From Lemma 4.9, it follows

that the expressions for the components of the coe�cient matrices are as follows:

M
�1(k; j) =

8>>><
>>>:
�U(k) (k; j + 1)K(j + 1; j)

= �U(k) (k; j + 1)G(j) for k > j

L(k) for k = j

M�1(j; k) for k < j

(4.23)

AC(k; j) =

8>>><
>>>:
U(k) (k; j)YA(j) for k � j

K�(k + 1; k) �(j; k + 1)EA(j) +Q�(k + 1; k)H�(j)

= G�(k) �(j; k + 1)EA(j) +Q�(k + 1; k)H�(j)

for k < j

(4.24)

BC(k; j) =

8>>><
>>>:
U(k) (k; j)YB (j) for k � j

K�(k + 1; k) �(j; k + 1)EB(j) +Q�(k + 1; k) _H�(j)

= G�(k) �(j; k + 1)EB(j) +Q�(k + 1; k) _H�(j)

for k < j

(4.25)

Based on Lemma 4.9, the following recursive algorithm describes an O(n2) procedure for computing

the coe�cient matrices M�1; AC and BC in the Linearized Forward Dynamics Model.

Algorithm 6: Algorithm for computing M�1; AC and BC

Step 1: Carry out the base-to-tip recursion in (3.4).

Step 2: Carry out the tip-to-base recursion in (4.16).

19

Step 3: 8>><
>>:

�(n+ 1) = 0

for k = n � � � 1

Z(k) = �(k + 1)G(k)

M�1(k; k) = L(k) = D�1(k) +G�(k)Z(k)

U(k) = L(k)H(k) � Z�(k)

�(k) = �(k + 1) +H�(k)U(k) � Z(k)H(k)8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

X(k) = U(k)

AC(k; k) = X(k)YA(k)

BC(k; k) = X(k)YB(k)

for j = k � 1 � � � 1

M�1(k; j) = M�1(j; k) = �X(j + 1)G(j)

X(j) = X(j + 1) +M�1(k; j)H(j)

AC(k; j) = X(j)YA(j)

BC(k; j) = X(j)YB(j)

end loop

C(k) = G�(k)Ĵ(k + 1)

�̂(k) = Ĝ(k)H(k)

Ĵ(k) = Ĵ(k + 1)�H�(k)C(k) + �̂�(k)

EA(k) = 2 _H�(k)��(k)YA(k) + 2Ĵ(k)H�(k)

EB(k) = �H�(k)��(k)YB(k) + 2Ĵ(k) _H�(k)

Q�(k + 1; k) = 2[Ĝ�(k)� C(k)]8>>>>>>><
>>>>>>>:

W (k + 1) = G�(k)

for j = k + 1 � � �n

AC(k; j) = W (j)EA(j) +Q�(k + 1; k)H�(j)

BC(k; j) = W (j)EB(j) +Q�(k + 1; k) _H�(j)

W (j + 1) = W (j)� [W (j)H�(j)]G�(j)

end loop

end loop

(4.26)

In Step 3, the algorithm proceeds from base-to-tip recursively computing the diagonal elements

of the coe�cient matrices M�1(k), AC(k) and BC(k). As each new element is computed, fresh

recursions are started to compute the o�{diagonal elements along the rows of the matrices. This

algorithm is of O(n2) complexity and its cost is given by

[36n2 + 781n� 225]M + [33n2 + 773n� 255]

The structure of this algorithm closely resembles the recursive O(n2) algorithm for computing the

inverse of the mass matrix, M�1 [15].

5 Conclusions

We have used spatial operators to provide a systematic and concise development of closed-form

operator expressions for linearized dynamics models for robot manipulators. These expressions in

turn led to the development of spatially recursive and e�cient computational algorithms.

20

The algorithms for the Linearized Inverse Dynamics Model allow the computation of the

perturbation vector �T as well as the coe�cient matrices M; AD and BD. The structure of the

O(n) Algorithm 1 for computing �T resembles that of the Newton{Euler inverse dynamics al-

gorithm. The O(n2) Algorithm 2 for the coe�cient matrices is related to the composite body

algorithm for computing the mass matrix.

Operator factorization results were used to obtain closed form operator expressions for the

Linearized Forward Dynamics Model. Using these expressions, we developed recursive algorithms

for the computation of the perturbation vector ��� and the coe�cient matrices M�1; AC and BC .

Algorithm 5 for computating ��� is of O(n) complexity and its structure is closely related to the

well known O(n) articulated body forward dynamics algorithm. Algorithm 6 for computing the

coe�cient matrices in this linearized model is of O(n2) complexity. Conventional algorithms for

the Linearized Forward Dynamics Model are of O(n3) complexity, require the explicit computation

of the Linearized Inverse Dynamics Model, the mass matrix as well as the numerical inversion of

the mass matrix. In contrast, Algorithms 5 and 6 described here are not only of lower complexity,

but are also direct and do not require either the computation or the explicit inversion of the mass

matrix.

6 Acknowledgements

The research described in this paper was performed at the Jet Propulsion Laboratory, California

Institute of Technology, under contract with the National Aeronautics and Space Administration.

References

[1] C. Balafoutis and R. Patel, Dynamic Analysis of Robot Manipulators: A Cartesian Tensor

Approach. Kluwer Academic Publishers, 1991.

[2] E. Gilbert and D. Johnson, \Distance Functions and their Application to Robot Path Planning

in the Presence of Obstacles," IEEE Journal of Robotics and Automation, vol. RA-1, pp. 21{30,

Mar. 1985.

[3] C. Balafoutis, P. Misra, and R. Patel, \Recursive Evaluation of Dynamic Robot Models,"

IEEE Journal of Robotics and Automation, vol. 2, no. 3, pp. 146{155, 1986.

[4] C. Neuman and J. Murray, \Linearization and Sensitivity Functions of Dynamic Robot Mod-

els," IEEE Transactions on Systems, Man and Cybernetics, vol. 14, no. 6, pp. 805{818, 1984.

[5] L. Guo and J. Angeles, \Controller Estimation for the Adaptive Control of Robotic Manipu-

lators," IEEE Transactions on Robotics and Automation, vol. 5, no. 3, pp. 315{323, 1989.

[6] J. Murray and D. Johnson, \The Linearized Dynamic Robot Model: E�cient Computation

and Practical Applications," in IEEE Conference on Decision and Control, Tampa, FL, Dec.

1989.

21

[7] G. Rodriguez, K. Kreutz-Delgado, and A. Jain, \A Spatial Operator Algebra for Manipulator

Modeling and Control," The International Journal of Robotics Research, vol. 10, pp. 371{381,

Aug. 1991.

[8] C.-J. Li, \An E�cient Method for Linearization of Dynamic Models of Robot Manipulators,"

IEEE Transactions on Robotics and Automation, vol. 5, pp. 397{408, Aug. 1989.

[9] C.-J. Li, A. Hemami, and T. Sankar, \A New Computational Method for Linearized Dy-

namic Models for Robot Manipulators," The International Journal of Robotics Research, vol. 9,

pp. 134{144, Feb. 1990.

[10] J. Luh, M. Walker, and R. Paul, \On-line Computational Scheme for Mechanical Manipula-

tors," ASME Journal of Dynamic Systems, Measurement, and Control, vol. 102, pp. 69{76,

June 1980.

[11] M. Walker and D. Orin, \E�cient Dynamic Computer Simulation of Robotic Mechanisms,"

ASME Journal of Dynamic Systems, Measurement, and Control, vol. 104, pp. 205{211, Sept.

1982.

[12] R. Featherstone, \The Calculation of Robot Dynamics using Articulated-Body Inertias," The

International Journal of Robotics Research, vol. 2, pp. 13{30, Spring 1983.

[13] A. Jain, \Uni�ed Formulation of Dynamics for Serial Rigid Multibody Systems," Journal of

Guidance, Control and Dynamics, vol. 14, pp. 531{542, May{June 1991.

[14] G. Rodriguez, \Kalman Filtering, Smoothing and Recursive Robot Arm Forward and Inverse

Dynamics," IEEE Journal of Robotics and Automation, vol. 3, pp. 624{639, Dec. 1987.

[15] G. Rodriguez, \Random Field Estimation Approach to Robot Dynamics," IEEE Transactions

on Systems, Man and Cybernetics, vol. 20, pp. 1081{1093, Sept. 1990.

Appendix A: Proofs of the Lemmas

The operator identities in the following lemma are used in the proofs that follow.

Lemma Appendix A:.1 Let X(k) 2 R
6�6 denote a spatial matrix associated with the kth link,

and de�ne X = diag
n
X(k)

o
. Then we have the folowing operator decomposition identities:

�X�� = �S + S ~��; where S(k)
4
= S(k � 1) +X(k) (A.1)

 X�� = S + S ~��; where S(k)
4
= (k; k � 1)S(k � 1) +X(k) (A.2)

 �X = �S + S ~ ; where S(k)
4
= �(k + 1; k)S(k) (k + 1; k) +X(k) (A.3)

��X ~�� = S�� � ��S; where S(k)
4
= S(k + 1) +X(k) (A.4)

 �X ~�� = S�� � �S; where S(k)
4
= �(k + 1; k)S(k + 1) +X(k) (A.5)

In the above S
4
= diag

n
S(k)

o
.

22

Proof: Since the proofs of these identities are similar to each other, for the purpose of illustration

only the proof of (A.2) is described below. For this case, the operator form of the recursive de�nition

of S(k) is given by the expression

X = S � E SE
�

�

Pre and post multiplying this identity by and �� leads to

 X�� = S�� � (� I)S ~��

from which (A.2) follows.

The following lemma contains expressions for the sensitivities of some of the spatial opera-

tors.

Lemma Appendix A:.2 Let X(k) 2 R
6 denote a constant spatial vector associated with the kth

link and de�ne X = col
n
X(k)

o
. Then

r�[H
�X] = diag

n eH�(k)X(k)
o
��H� (A.6)

r�[HX] = H diag
n
Q[X(k)]

o
��H� = H diag

n
Q[X(k)]

o
~��H� (A.7)

r�[MX] = �

�
diag

n
Q[M(k)X(k)]

o
+M diag

n
S
�[X(k)]

o�
��H� (A.8)

r�[MV] = �diag
n
Q[M(k)V (k)]

o
��H� +M�� _H� (A.9)

Proof: Firstly note that H and M are functions of only the hinge angles � and are independent

of _�. Thus

r�[H
�X] = r _�

[_H�X]

Using this fact, the expression for _H(k) in (2.13) and with some additional algebraic manipulation

we obtain (A.6). Using similar steps and the expression for _M(k) in (2.6), the identities (A.7) and

(A.8) can also be established. We have

r�[MV] = r�[MX]

����
X=V

+Mr�[V] (A.10)

Using the fact that V = ��H� _�, as well as (A.6) and (A.4), it follows that

r�[V] = diag
ne
�(k)o��H� +�� _H�

Combining this with (A.8) and (A.10) establishes (A.9).

Proof of Lemma 3.1: The following identities hold for any function g(�; _�),

@ _g

@��
=
@g

@ _�
;

@ _g

@ _�
=

d

dt

@g

@ _�
+
@g

@�
; and

@ _g

@�
=

d

dt

@g

@�

From (2.19) it follows that

T = H�
d[M��H� _�]

dt
= H�

d[MV]

dt

23

Thus

r��
T = H�r _�

[M��H� _�] =M (A.11)

Using (A.9),

AD = r _�
T = H�r _�

[
d[M��H� _�]

dt
] = H�

d[M��H�]

dt
+H�r�[M��H� _�]

= H�M�� _H� +H� _M��H� +H�[�diag
n
Q[M(k)V (k)]

o
��H� +M�� _H�]

= 2H�[M�� _H� + M̂��H�] (A.12)

From (A.1), (A.9) and (A.7),

BD = r�T = r�[H�
d[MV]

dt
] = [r�HX]X=f +H�

d

dt
r�[MV]

= H diag
n
Q[f(k)]

o
��H� +H�[�diag

n
Q[x(k)]

o
��H� + 2M̂�� _H� +M�� �H�]

= H�[�diag
n
Q[f(k)]

o
H
� + 2M̂�� _H� +M�� �H�] (A.13)

Proof of Lemma 3.2: Using the de�nitions of R(k) and R̂(k) in (3.7), and (A.1) we have the

following identities:

�M�� = �R+R~��; and �M̂�� = �R̂+ R̂~��

The rest of the proof consists of the repeated use of these identities in the operator expressions for

M; AD and BD in Lemma 3.1.

The proofs of Lemmas 4.2, 4.3 and 4.5 are completely analogous to the proofs in references

[7, 13]. However for the sake of completeness we include them here.

Proof of Lemma 4.2: It is easy to verify that �P�� = �P . As a consequence, the recursion for

P (:) in (4.3) can be rewritten in the form

M = P � E PE
�

 = P � E PE
�

� = P � E�PE
�

� +KDK� (A.14)

Pre and post multiplying the above by � and �� respectively then leads to

�M�� = P + ~�P + P ~�� +�KDK���

Hence,

M = H�M��H� = H[P + ~�P + P ~�� +�KDK���]H�

= D +H�KD +DK���H� +H�KDK���H� = [I +H�K]D[I +H�K]�

Proof of Lemma 4.3: Using a standard matrix identity we have that

[I +H�K]�1 = I �H�[I +KH�]�1K (A.15)

24

Note that

 �1 = I � E = (I � E�) + E�GH = ��1 +KH (A.16)

from which it follows that

 �1� = I +KH�

Using this in (A.15) results in

[I +H�K]�1 = I �H�[�1�]�1K = I �H K

Proof of Lemma 4.5: From (A.16) we have that

[I �H K]H� = H [�1 �KH]� = H (A.17)

establishing the �rst identity. Using (A.17) and Lemma 4.4 it follows that

M
�1
H�M�� = [I �H K]�D�1H M�� (A.18)

From (A.14) it follows that

M = P � E PE
�

� =) M�� = P + P ~�� (A.19)

and so (A.18) simpli�es to

M
�1
H�M�� = [I �H K]�D�1H[P + P ~��] (A.20)

From (A.16) we have that

[I �H K]�D�1HP ~�� = [I �H K]�K��� = K� �[�� �KH]��� = K� �

(A.21)

Using this in (A.20) leads to the result.

Proof of Lemma 4.7: From the de�nition of P̂ in (4.12), and (A.2) it follows that

 M̂�� = P̂ + P̂ ~��

And so

H M̂�� = H P̂ +DK̂���

The main result follows from the repeated use of this identity in the expressions for M�1; AC and

BC in Lemma 4.6.

Proof of Lemma 4.8: From (4.19) it follows that

�(k) = �(k + 1; k)�(k + 1) (k + 1; k) +H�(k)D�1(k)H(k)

The main result follows from using this along with (A.3).

Proof of Lemma 4.9: From (4.20) and (4.8) it follows that

M
�1 = [D�1 +G��+G] +K� �[���+G�H�D�1] + [G��+� �D�1H] K (A.22)

25

which establishes the decomposition of M�1. From (4.20) it also follows that

[I �H K]�D�1H = D�1H �K� ���K�� ~ = U �K� �� (A.23)

Using (A.2), (A.5), (A.23) and the de�nitions in (4.22),

AC = 2[I �H K]�D�1H [M̂��H� + P _H�] + 2K� � _H�

= 2[I �H K]�D�1H [P̂H� + P _H�] + 2[I �H K]�D�1HP̂ ~��H� + 2K� � _H�

= [I �H K]�D�1H YA + 2[I �H K]�Ĝ� ~��H� + 2K� � _H�

= U YA +K� �[2 _H� ��YA] + 2K̂���H� � 2K� ��̂� ~��H�

= U YA +K� �[2 _H� ��YA + 2ĴH�] + 2[K̂�
� 2K�Ĵ]��H�

= U YA +K� �EA +Q��H� (A.24)

The expression for BC follows in a similar manner.

26

